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Abstract 

The fact that a non-relativistic particle describes an orbit imposes a restriction on the 
functional form of the Lagrangian. For a classical particle subjected to an arbit rar)- lc~-al 
"generalized force,' the (local) Lagrangian is shown to involve, at highest, first, second and 
third time-derivatives of the position respectively, in one, two and three dimensions. ~ae 
generalization in the quantum r~gimr is indicated with the aid of Feynman's path integrals. 

1. Introduction 

The derivation of  Lagrange's equation of  motion from Hamihon's 
principle has been often described as "elegant' (Goldstein, 1950). Ik~sides, 
this approach to dynamics has the further merit that the Lagrangian to be 
constructed involves only physical quantities such as kinetic and potential 
energy which characterize the motion of  the system. Thus, this formulation 
is automatically invariant with respect to the choice Of coordinates for the 
system. Another advantage is that the Lagrangian formulation can be 
extended easily to describe systems which are not normally considered in 
dynamics such as the electromagnetic fields, quantum fields of elementary 
particles, and so on (Wentzel, 1949). The fact that the Lagrangian in general 
involves fime-derivatives of  lower orders than the equation of motion, 
Lagrange's equation, is a further advantage. This is so in particular when 
o n e  is looking for a new equation of  motion since one may start dealing 
with quantities of l~,~ser conceptual complexities. 

Ordinarily, the Lagrangian for a system is chosen such that the equation 
of  motion derived from it should be in agreement with physical experience, 
i.e. should be successfully tested with experiments. In most cases, the 
Lagrangian L has been chosen to be a functional ofthe position and i~s first 
fime-derivative, velocity, because the empirically tested equation of motion, 
Newton's equation, etc., can be derived from this form of L. However, if 
o n e  were unaware of Newton's law beforehand or, more generally, unavail- 
able of  definite laws of motion, and were looking for new equations of 
motion, one would have started with the Lagrangian involving the deriva- 
fives of  still higher orders. Some authors considered such general cases and 
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discussed the mathematical structure of the hypothetical laws of motion 
involving high derivatives (Barut & Mullcn, 1962; Thielheim, 1967). An 
interesting question may be raised whether there should exist any reasonable 
upper bounds on the order of the derivatives which enter into the Lagrangian 
and hence into the equation of motion. The present paper concerns this 
question and it is pointed out, and shown, that for a non-relativistic particle 
in an arbitrary "local force field" the Lagrangian should involve, at highest, 
first, second and third time-derivatives respectively, in one, two and three 
dimensions. This restriction arises from the fact that particle describes an 
orbit. This restriction has the physical meaning also in the quantum r6gime, 
where the action is measured in units of Planck's constant/i if the quantiza- 
tion is prescribed according to Feynman~ path integrals (Fcynman & 
Hibbs, 1965). 

2. Cla~ical Motion in Free Space 

Let us consider a mass point, hereafter called a particle, in the three- 
dimensional space. Let us suppose that the particle moves from the space- 
time point (r,, t,) to (rz, tz). This motion is completely known if the position 
r(t) of the particle is found as a function of time t, 

r =  ~t), ti~_t<=tz (2.1) 

crz''O 
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Figure l--The orbit from (r,, tt ) to (r~, t:) can be characterized by the Fath Cand the speed 

a(t)with which the particle proceeds along (7. 

An equivalent way of describing the motion is to know the path, i.e. the 
curved line of passage C and the speed u(t) with whivh the particle proceeds 
along C. If the arc length of the curve from rj(t:) is denoted by s _~ O, then 
the speed u(t) is given by 

u(t) - ~ > 0 (2.2) 
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Let us now consider an infinitesimal segment of  the curve. This segment is 
characterized bY the position and the unit tangent t = dr/ds. The direction 
of  the tangent t in three dimension may be specified by two angles with 
respect to a set of  fixed axes. By giving these angles as functions of  s, one 
may then characterize the whole curve. However, this sort of  specification 
depends on the choice of coordinates. As it is well known in differential 
geometry, one can avoid this in the following manner. Introduce the three 
local orthonormal vectors, i.e. tangent t, normal n and binormal b. They 
change according to the Freshet formulae, 

dt 
~ = =  l o l l  

d, 
db 
-~  -- - r a  (2.3) 

dn == ~I) ~t 
dr 

where ~ _ 0 )  and -r are numbers, called resI~ec~ivcly curvature and torsion. 
One can then characterize the whole curve by giving K and ~- as functions of  
s [the fundamental theorem in differential geometry (Struik, 1950)]. Con- 
versely i ra  curve is given by r = r(s), then the local part.meters ,r and r are 
given by the s-derivatives of r. If Cartesian coordinates are used, x(s) and 
"r(s) are given by 

ldZx\ 2 ld2y\  2 (daz~ ~ 

a~ ds ds 

1 d2x d2Y d2z (2.4) 
~ s ) = ~  ds ~ ds 2 as 2 

d3x d )y  d)z  
ds 3 ds 3 ds j 

It is emphasized that the characterization of the curve requires two 
independent local variables in any specifications. That is a characteristic 
of  the space in which the curve runs. I f  the curve is restricted to run on a 
two-dimensional plane, one local parameter would have been sufficient. 

Unlike the position vector r(t) in the equation of  orbit (2.1), the speed 
u(t), the curvature x(s) and the torsion .r(s) in (2.2-2.4) are scalars, and in 
fact do not depend on the choice of the coordinate system. These scalars 
may be thus called intrinsic local parameters for the motion. Therefore, the 
Lagrangian, Li, must be defined through these local parameters, and will 
be given by a functional of  the same, 

L, =L,[~(s(O)~(s(t)),u(t)] (2.5) 



SHIGE/I FffJrrA 

When applying Hamilton's principle to derive the equation of motion, 
it is customary to express the Lagrangian in terms of a chosen set of co- 
ordinates e.g. (x,y,z)  and their time-derivatives. 

Since 
dx(s(t)) axds dx dx tdx  I. 

dt ds dt = "~ u(t) or ds u dt u 

la x la .ax  
= u2 7/i2- - u -di-df (2.0 

By this calculation we can infer and show that ~c(s(t)) can be exprcssed in 
terms of up to the second time-derivatives of the coordinates, i.e. velocity 
and acceleration. In a similar manner we can show that the torsion ~-(s(t)) 
can be expressed in terms of up to the third time-derivatives. We thus 
find that the Lagrangian Lt [K,'r,u] can contain up to third time-derivatives 
but no higher derivatives. We also see thaLthe highest order of the space 
derivatives is transferred without change in that of the time-derivatives. 

3. Classical Motion in Anisotropic Space 

The motion of the particle will ingeneral be affected by the surroundings. 
This environmental influence will depend on the location r(t) of the particle, 
or in more general cases will depend on the kinetic state of motion ifcorrela- 
lion should exist between the influence and the state of motion. If the 
influence were to depend only on the location r(t) and the kinetic character- 
istics (K,T'U), then it will be said to be a local influence. Such local influe,~ce 
must be characterized by the Lagrangian 

La = L2[r(t), K ~-, u, t] (3.1) 

If we note that the kinetic parameters can be specified by up to third time- 
derivatives, then we may write the Lagrangia n L2 as 

/.2' = L2'[r, t, i ~, i:, t ] (3.2) 
instead of (3.1). 

The total Lagrangian L will be defined as 

L ~ Lt + L2' (3.3) 
which can contain up to third time-derivatives but no higher derivatives, 
This establishes our major assertion stated in the introduction. 

Now, the variational principle 

8 -- 8 f ,3 L(.~,.~, ~, 3t,. . . ,  ~;. . . ,  x , . . . ,  t) dt =, 0 (3.4) ~t 
may be applied in a usual manner, except for the fact that the variation is 
subject to the subsidiary condition 

which characterizes the space curve. 
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in general, the variational principle of the form (3.4) could yield the 
simultaneousequations ofsixth order, but none ofhigher orders. It is noted 
that the advantage of the Lagrangian formulation is clearly seen here. It is 
difficult and almost impossible to conceive a general equation of sixth 
order in time. 

If the motion of the particle is restricted to a plane, then the path is 
characterized by the two-dimensional curvature ~ alone, which involves the 
second derivatives. Then, by a similar argument we can deduce that the 
Lagrangian may contain up to second time-derivatives, i.e. position, 
velocity and acceleration. In the one-dimensional motion, the path is 
specified by the direction along the line axis, i.e. the sign of dx/ds. The 
Lagrangian will be then a functional of position and speed (and time). 

The conclusion obtained here is rather striking. It is notable that the 
argument is essentially based on the assumed locality of the Lagrangian. 
The argument does not apply to a non-local theory, which is, however, 
harder to conceive than a local theory. 

4. Examples and Remarks 

In the case when the classical particle is subjected to a conservative force 

F(r) = -V,/,(r) (4.1) 

where ~ r )  is the potential energy, the Lagranglan L is chosen to be 

L ,= �89 - ~(r) (4.2) 

Where M is the mass of the particle. This is the choice which gives rise to 
Newton's equation of motion 

Md2r  
= -Vg~(r) (4.3) 

Iris notable that the form (4.2) is consistent with the general characteriza- 
tion of the Lagrangians, (2.5) and (3.1). It is interesting to note that the 
motion prescribed by the traditional classical mechanical rule does not 
depend on the geometrical parameters 0c,r If the motion were to depend 
on these parameters, the mechanics would have been quite different, 
depending strongly on the dimensional order of the space. 

5. Quantum Generalization 

The argument with respect to the orbital-motional restriction on the 
Lagrangian can be carried over in the quantum r(~gime, where the action 

I ~  f t~L 
d t l  

is measured in the unit of Planck's constant/L This can be done simply by 
constructing (new) quantum mechanics with the aid Of path integrals 
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(Feynman & Hibbs, 1965). The probability P ( h t ,  r: t~)---P(2, l) to go 
from (r, t:) to (rz tz) is by postulate given by the absolute square 

e ( 2 ,  l )  = lie(2, l)l  2 (5.1) 

of  an amplitude K(2~ I) to go from 1 to 2; this amplitude is defined by the 
sum of  the contribution r from each path. 

IC (2 ,0 =  7. ~[r(t)] (5.2) 
a|t pths 

The contribution of  a path has a phase proportional to the action l[r(t)] 

O[~t)]  = coast, exp (i/A) l[r(t)] (5.3) 

where the action is that for the corresponding classical system. The usual 
Schr0dinger-like description in terms of  the wave function ~( r , t )can  bc 
generated from the integral equation 

~(r2,12) ~ f d j rl K(rz t2, r: t:) r t~ (5.4) 

The further detailed discussion will not bc given in the present paper, for 
this would become meaningful only when, a particular form of Lagrangian 
is specified and used in the discuss/on. 

The generalization of  the argument to the case of a relativistic particle 
and to that o f a  qunatum field is currently under investigation. 
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